

Mechanizmus	Použitie	Typ zariadenia	Typ detektora
lonizácia IŽ môže priamo (α,β) alebo nepriamo (γ, X, n) ionizovat prostredie detektora	Monitorovanie radiácie	1. lonizacné komory 2. Proporcionálne p. 3. GM pocítace 4. Polovodicové det.	1. plynné 2. plynné 3. plynné 4. pevná látka
Scintilácia Záblesky svetla pri deexcitácii atómov v detekcnom kryštále sú konvertované na elektrický signál vo fotonásobici.	Monitorovanie radiácie	scintilacné detektory	kryštál alebo tekutá látka
Termoluminiscencia Elektróny sú v TLD kryštáloch zachytené v pasciach po excitácii žiarením. Vyslobodenie z pasce sa deje prostredníctvom dodania tepla za emisie fotónov svetla, ktoré sa registrujú fotonásobicom.	Osobná dozimetria	TLD dozimeter	kryštál
Chemické reakcie Žlarenie môže spôsobit resp. urýchlit niektoré chemické reakcie. Vyhodnotenie chemických zmien môže dat informáciu o absorbovanej dávke.	Osobná dozimetria	fotografický film Železnatý roztok Fe²++OH→ Fe³+ +OH⁻	Fotoemulzia Frickeho dozimeter
Ohrev Ionizujúce žiarenie pri interakcii odovzdáva energiu absorpenému prostrediu, ktorá za tým zohrieva. Ohrev je proporcionálny absorbovanej dávke.	Kalibrácia meracích prístrojov a štandardov	kalorimeter	tekutá alebo pevná látka
Biologické zmeny Žiarenie spôsobuje zmeny v biologickom tkanive (frekvencia chromozómových aberácií), ktoré môžu byt za urcitých okolnosti využíťe na urcenie devkv	Havarijné situácie	biologické tkanivo	biologické tkanivo

Základné procesy pri detekcii žiarenia							
Primárne častice	Proces interakcie	Nabité priamo ionizujúce častice					
α - častice	ionizácia a excitácia Coulombovskými silami	primárne častice a sekundárne elektróny					
β - častice	ionizácia a excitácia Coulombovskými silami	primárne a sekundárne elektróny					
	emisia brzdného žiarenia	elektróny z interakcie brzdného žiarenia					
	fotoelektrický jav	fotoelektróny					
	Comptonov rozptyl	Comptonove elektróny					
fotóny γ a X	tvorba párov e ⁻ a e ⁺	vzniknuté páry e∙a e+					
	koherentný rozptyl	-					
	fotojadrová reakcia	produkty reakcie					
	pružný rozptyl	odrazené jadrá (ľahké)					
	nepružný rozptyl	odrazené jadrá a elektróny po interak vzniknutých fotónov					
neutróny	radiačný záchyt (n,γ)	elektróny po interakcii vzniknutých fotónov					
	jadrové reakcie (n,α), (n,p)	nabité produkty reakcií					
Ī	štiepenie jadier	štiepne fragmenty					

 Vhodnosť použitia detektora len pre určitý druh žiarenia sa posudzuje podľa jeho selektivity, ktorá udáva pomer citlivosti detektora pre registráciu požadovaného (skúmaného) druhu žiarenia k citlivosti detektora na ostatné druhy žiarenia.

Iná ener	gia ionizácie	plynu <i>w</i> (eV/ij)
Plyn	Alfa žiarenie	Beta žiarenie	w_{α}/w_{β}
Не	43	42	1,02
H ₂	36	36	1,00
O ₂	33	31	1,06
CO ₂	36	33	1,09
CH ₄	29	27	1,07
C ₂ H ₄	28	26	1,08
Vzduch	36	34	1,06

Plynové detektory	neutrónov na b	áze He	e-3	
	¹ n+ ³ He = ¹ p+	- ³ T+764	keV	
	 (1) The counter length car (2) PC-proportional counter length car (2) PC-proportional counter like initiation of amplification) (3) He-3 pressure in the core 6 atm, if ordered specific 40 ln case of isotropic flow efficiency increases if Hereit in the core of the second s	n be agreed w ter mode (with namber mode ounter CN-04 o ally v of thermal n -3 pressure is	ith the custor gas amplific (without gas can be increa eutrons, regi s increased, t	mer. cation) used up to stration oo.
	Counter type	CN-01	CN-03	CN-04
the second s	Diameter	30 mm	18 mm	30 mm
8	Length of the operating part (1)	900 mm	100 mm	970 mm
	Operation mode (2)	IIC	PC	PC, IIC
A.0)	He-3 pressure	2 atm	7 atm	2 atm (3)
	Own background, not more	0.01 imp/s	0.001 imp/s	0.001 imp/s
	Insulation resistance, not less	1011 Om	1011 Om	1011 Om
	Operating voltage	400 V	1200 V	400-1200 V
	Efficiency of registration of thermal neutrons(4), not less	50%	70%	60%
in fi	Charge collection time	4 mcs	2 mcs	2 mcs
	Length of working plateau	-	200 V	200 V
No. of Concession, Name	Plateau tilt for 100V	-	1%	1%
	Operating temperature range	± 50°C	± 50°C	± 50°C
	Weight, not more than	0.6 kg	0.2 kg	0.5 kg

FHT 65 L/LX Monitor kontaminácie rúk a nôh

- FHT 65 L:
- prietokový plynový proporcionálny detektor Ar+CH₄, Ar+CO₂ or CH₄ for alpha/beta monitoring
- FHT 65 LX:
- Uzavretý xenónový detektor na gama monitoring

FHT 111 M Contamat (*) Meranie povrchovej kontaminácie alfa, beta a gama rádionuklidmi. Používa veľkoplošný proporcionálny plynový detektor a mikroprocesor na výpočty. Výsledok merania v cps, Bq or Bq/cm² Súčasné meranie alfa a beta 10 referenčných izotopov v pamäti alarmy vyhľadávací režim so zvukom možnosť odrátania pozadia pamäť pre 128 nameraných údajov

Cathode type	Composition	Peak QE	Peak λ
S1	AgOCs	0.4%	800 nm
S10	BiAgOCs	7%	420 nm
S11	CS₃SbO	21%	390 nm
S20 (multi-alkali)	Na ₂ KSbCs	22%	380 nm
Bialkali	K ₂ CsSb	27%	380 nm
Bialkali (high temp)	Na ₂ KSb	21%	360 nm
Bialkali (high temp)	KCsRbSb	24%	440 nm
Bialkali	RbCsSb	25%	450 nm
Solar blind	СеТе	18%	200 nm
Solar blind	Csl	15%	135 nm

Parametre moderných scintilátorov								
Physical properties	NaI:TI	YAG:Ce	LuAG:Ce	YAP:Ce	BGO	CaF:Eu	CsI:Tl	
Density[g/cm3]	3.67	4.57	6.73	5.37	7.13	3.18	4.51	
Hardness [Mho]	28.5	8.5	8.6	-	4	2	5.8	
Index of refraction	1.85	1.82	1.84	1.95	2.15	1.44	1.78	
Crystal structure	Cubic	Cubic	Cubic	Rhombic	Cubic	Cubic	Cubic	
Melting point [°C]	651	1970	2020	1875	1050	1360	621	
Hygroscopic	Yes	No	No	No	No	No	Slightly	
Linear coef. thermal expansion [10-5/K]	4.75	0.8-0.9	-	0.4-1.1	0.7	1.95	5	
Chemical formula	NaI	Y ₃ Al ₅ O ₁₂	Lu ₃ Al ₅ O ₁₂	YAIO ₃	Bi ₄ (GeO ₄) ₃	CaF ₂	CsI	
Luminescence properties					•			
Integrated light output [% NaI:Tl]	100	40	20	70	15-20	50	45	
Wavelength of max. emission [nm]	415	550	535	370	480	435	550	
Decay constant [ns]	230	70	70	25	300	940	900	
Afterglow [% at 6 ms]	0.5-5	< 0.005	-	< 0.005	< 0.005	<0.3	<2	
Radiation length [cm] for 511 keV	2.9	3.5	-	2.7	1.1	3.05	1.86	
Photon yield at 300 K [103 Ph/MeV]	38	35	20	25	8-10	23	52	

	2	_	_	Eatánav
Materiál	∧ _{max} (nm)	τ _f (ns)	ρ (g/cm3)	na 1 MeV
Nal(TI) (20°C)	415	230	3.67	38 000
pure Nal (-196°C)	303	60	3.67	76 000
Bi ₄ Ge ₃ O ₁₂ (20°C)	480	300	7.13	8 200
Bi ₄ Ge ₃ O ₁₂ (-100°C)	480	2000	7.13	24 000
Csl(Na)	420	630	4.51	39 000
CsI(TI)	540	800	4.51	60 000
Csl(pure)	315	16	4.51	2 300
CsF	390	2	4.64	2 500
BaF₂(slow)	310	630	4.9	10 000
BaF₂(fast)	220	0.8	4.9	1 800
Gd₂SiO₅(Ce)	440	60	6.71	10 000
CdWO₄	530	15000	7.9	7 000
CaWO4	430	6000	6.1	6 000
CeF₃	340	27	6.16	4 400
PbWO4	460	2, 10, 38	8.2	500
Lu₂SiO₅(Ce)	420	40	7.4	30 000
YAlO₃(Ce)	390	31	5.35	19 700
Y₂SiO₅(Ce)	420	70	2.70	45 000

Charakte	ristiky n	nateriál	ov TLD		
Charakteris	stiky niek	torých tei	rmoluminisce	nčných r	nateriálov
Typ TLD	Z _{ef}	Hlavný pík (°C)	Emisné maximum (nm)	Relatívna citlivosť	Fading (pri 25 °C)
LiF:Ti,Mg	8,3	200	400	1	5%/rok
LiF:Na,Mg	8,3	200	400	1	5%/rok
LiF:Mg,Cu,P	8,3	210	400	25	5%/rok
Li ₂ B ₄ O ₇ :Mn	7,3	220	605	0,2	4%/mesiac
Li ₂ B ₄ O ₇ :Cu	7,3	205	368	2	10%/2mesiace
Mg ₂ B ₄ O ₇ :Dy	8,4	190	490	10	4%/mesiac
BeO	7,1	190	200-400	0,2	8%/2mesiace
CaSO₄:Dy	14,5	220	480-570	30	1%/2mesiace
CaSO₄:Tm	14,5	220	452	30	1-2%/2mesiace
CaF ₂ :Mn	16,3	260	500	5	16%/2týždne
CaF ₂ (prír.)	16,3	260	380	23	veľmi malý
CaF ₂ :Dy	16,3	215	480-570	15	8%/2mesiace

	TLD dozimetre SLM
1.	TLD typu BG2 je schopný monitorovať:
	 fotónové žiarenie v energetickom rozsahu 20 keV – 10 MeV (t.j. aj X žiarenie)
	 beta žiarenie v energetickom rozsahu 170 keV – 2,7 MeV fotónového a beta žiarenia
2.	TLD typu NBG je schopný monitorovať okrem fotónového a beta žiarenia vo vyššie uvedených rozsahoch aj tepelné neutróny (albedo dozimeter)
3.	Prstový aj náramkový TLD je určený ako doplnkový dozimeter pre použitie na pracoviskách so zvýšeným rizikom ožiarenia prstov, resp. rúk, kde sa vyskytujú zdroje fotónového žiarenia energie 20 keV až 10 MeV. Výsledok merania odozvy dozimetra sa udáva ako ekvivalentná dávka v mieste umiestnenia TLD (na najexponovanejšom mieste končatín) v jednotkách Sievert. Bez bližšej špecifikácie ožarovacích podmienok možno prstovým a náramkovým TLD merať hodnoty od 0,1 mSv do 20 Sv s presnosťou do ± 35%.

Cha	rakteristiky Vybran	y aktivačn ié prahové ak	ých do tivačné	etektorov detektory	
	Prvok	Τ _{1/2}		Prah (MeV)	
	¹⁹ F(n,2n)	109,7	nin	11,6	
	²⁷ Al(n,α)	15,0	h	4,9	
	²⁷ Al(n,p)	9,46 n	nin	3,8	
	⁶⁴ Zn(n,p)	12,7	h	2,0	
	¹¹⁵ ln(n,n′)	4,5	1 <u> </u>	0,5	
	⁷ Li(n,α)	12,3	12,3 r 3,		
	²⁴ Mg(n,p)	15,0	h	6,0	
	Aktivači	né detektory	tepelnýo	ch neutrónov	
	Prvok	T _½	Prvok	κ Τ <u>γ</u> 2	
	⁵⁵ Mn	2,58 h	¹⁰⁷ Ag	2,3 min	
	5ºCo	10,4 min	¹¹⁵ In	54,1 min	
	65Cu	12,87 h	197 A	1,3 min	
		5,14 MIN	"Au	2,695 a	

Charakteristiky emitorov									
Emitter Material	Rhodium	Vanadium	Cobalt	Hafnia (Hf02)	Silver	Platinun			
Emitter Diameter mm	0.46	2.0	2.0	1.24	0.65	0.51			
Emitter Length mm	400	100	210	7000	7000	3050			
Insulator Type	Al ₂ O ₃	Al ₂ O ₃	Al ₂ O ₃	M _g 0	M _g 0	Al ₂ 0 ₃			
Collector Material	Inconel	Inconel	Inconel	Stainless Steel	Stainless Steel	Inconel			
Collector Diameter mm	1.57	3.5	3.5	3.0	3.0	1.6			
Thermal Neutron Sensitivity A/nv	3.6x10 ⁻²⁰	4.8x10 ⁻²¹	5.4x10 ⁻²¹	7.9x10 ⁻²⁰	42x10 ⁻²⁰	2.5x10 ⁻²			
Co ⁶⁰ Gamma Sensitivity A/R/HR	7.0x10 ⁻¹⁷	4.0x10 ⁻¹⁷	5.6x10 ⁻¹⁷	2.8x10 ⁻¹⁶	13.5x10 ⁻¹⁶	3.4x10 ⁻¹			
Insulation Resistance ohms 20°C 300°C	>10 ¹² >10 ⁸	>10 ¹² >10 ⁸	>10 ¹² >10 ⁸	>10 ¹⁰ >10 ⁸	>10 ⁹ >10 ⁷	>10 ¹² >10 ⁸			
Response Time (0-63%)	1.1 Minutes	5.5 Minutes	Prompt	Prompt	0.5 Minutes	Prompt			
Burn-up Rate %/month at 10 ¹³ nv	0.39	0.01	0.09	0.30	0.16	0.03			

Emitter	Stable	0/	Activation	Populting	
Material	Isotope	Composition	Cross-section (barns)	Nuclide	
Vanadium	23V ⁵⁰	0.24	100	23V ⁵¹	Stable
	23V ⁵¹	99.76	4.9	23V52	3.76 Minutes
Rhodium	45Rh ¹⁰³	100	11(8%)	45Rh ^{104m}	4.4 Minutes
			135(92%)	45Rh ¹⁰⁴	42 seconds
Cobalt	27Co ⁵⁹	100	37	27 Co ⁶⁰	5.27 years
Hafnia	₇₂ Hf ¹⁷⁴	0.18	390	72Hf ¹⁷⁵	70 days
	72Hf ¹⁷⁶	5.20	15	₇₂ Hf ^{177m}	51.4 min
	72 Hf ¹⁷⁷	18.50	380	72Hf ^{178m}	31 years
	72Hf ¹⁷⁸	27.14	75	₇₂ Hf ^{179m}	25.1 days
	72 Hf ¹⁷⁹	13.75	65	72Hf ^{180m}	5.5 hours
	72Hf ¹⁸⁰	35.23	14	₇₂ Hf ^{181m}	42.4 days
Silver	47Ag ¹⁰⁷	51.82	35	47Ag ¹⁰⁸	2.42 min
	47Ag ¹⁰⁹	48.18	93	47Ag ¹¹⁰	24.4 seconds
Platinum	78Pt ¹⁹²	0.78	14	78Pt ^{193m}	4.3 days
	78Pt ¹⁹⁴	32.90	2	78Pt ^{195m}	4.1 days
	78Pt ¹⁹⁵	33.80	24	78Pt ¹⁹⁶	Stable
	78Pt ¹⁹⁶	25.30	1	78Pt ^{197m}	1.3 hours
	78Pt ¹⁹⁸	7.22	4	70Pt ¹⁹⁹	30.8 min

Použitie SPND
Mapovanie hustoty toku neutrónov v aktívnej zóne
Regulácia reaktora (okamžité SPND)
Lokálna ochrana aktívnej zóny (okamžité SPND v LWR, RBMK)

SPND na báze ¹⁹⁵Pt

- ¹⁹⁵Pt has a n-gamma interaction with a 24 barn thermal neutron crosssection and a parallel gamma-photon reaction.
- The burn-up rate is 0,03%/month in a thermal neutron flux of 10¹³ cm⁻²s⁻¹.
- The signal is prompt and has both neutron and gamma components.
- A SPND with a platinum emitter is sensitive to both gamma and neutron fluxes with 93% of the signal current due to gamma flux response and 7% due to neutron flux response in a typical light water reactor core.
- A SPND with a platinum emitter has a relatively low sensitivity, low burnup rate and a prompt signal.

- F=(40 ± 8) Bq.cm⁻²/s⁻¹
- d = (10 ± 2) mm vzdialenosť detektor vzorka
- Pri kalibrácii bola vzdialenosť detektor vzorka 5 mm.
- Toto treba vziať do úvahy pri výpočte K_{d,air} a K_{d,geo}

Bilancia neistôt						
Veličina	Najlepší odhad	Štandardná neistota	Rozdelenie	Koeficient citlivosti	Príspevok neistoty k výslednej hodnote	
С	1600 s ⁻¹	40 s⁻¹ sqrt(1600)	Normálne	1,43 cm ⁻²	57 s ⁻¹ cm ⁻²	
В	4 s⁻¹	2 S ⁻¹ sqrt(4)	Normálne	1,43 cm ⁻²	3 s ⁻¹ cm ⁻²	
D	100 cm ²	0,6 cm ²	Rovnomerné	-22,8cm ⁻⁴	-14 s ⁻¹ cm ⁻²	
F	40	8	Normálne	56,9s ⁻¹	455 s ⁻¹ cm ⁻²	
K _n	1,0	0,1/√3=0,058	Rovnomerné	2276s ⁻¹ cm ⁻²	132 s ⁻¹ cm ⁻²	
K _{HV}	1,0	0,01/√3=0,006	Rovnomerné	2276s ⁻¹ cm ⁻²	13 s ⁻¹ cm ⁻²	
K _{temp}	1,0	0,05/√3=0,029	Rovnomerné	2276s ⁻¹ cm ⁻²	66 s ⁻¹ cm ⁻²	
K _{hum}	1,0	0,025/√3=0,014	Rovnomerné	2276s ⁻¹ cm ⁻²	32 s ⁻¹ cm ⁻²	
K _{d,air}	1,24	0,06/√3=0,035	Rovnomerné	1835s ⁻¹ cm ⁻²	64 s ⁻¹ cm ⁻²	
K _{d,geo}	1,11	0,02/√3=0,012	Rovnomerné	2050s ⁻¹ cm ⁻²	25 s ⁻¹ cm ⁻²	
K _{uni}	1,0	0,025/√3=0,014	Rovnomerné	2276s ⁻¹ cm ⁻²	32 s ⁻¹ cm ⁻²	
K _{sur}	2,59	1,59/√3=0,918	Rovnomerné	879s ⁻¹ cm ⁻²	807 s ⁻¹ cm ⁻²	
A = (2276 ± 944) s ⁻¹ .cm ⁻²						

Rádionuklid Polčas Maximálna energia beta snektra I						
⁶³ Ni	96 v	0.0659				
¹⁴ C	5730 y	0,1565				
²⁰³ Hg	46,6 d	0,2122				
¹⁴⁷ Pm	2,6234 y	0,2247				
⁴⁵ Ca	163 d	0,2569				
⁶⁰ Co	5,271 y	0,3179				
¹³⁷ Cs	30,0 y	0,51155(94,6%) a 1,1732(5,4%)				
¹⁸⁵ W	75,1 d	0,4324				
²⁰⁴ TI	3,779 y	0,7634 (97,4%)				
³⁶ Cl	3,01x10⁵ y	0,70955 (98,1%)				
¹⁹⁸ Au 2,696 d 0,28241 (1,3		0,28241 (1,3 %) 0,9607 (98,7%)				
⁸⁹ Sr	50,5 d 1,4913					
³² P	14,29 d	1,7104				
⁹⁰ Sr+ ⁹⁰ Y	29,12 y	0,545 a 2,2839				

Referenčná odozva pri meraní vzácnych plynov

- Relatívna chyba merania nesmie byť väčšia ako 15 % pri štandardných podmienkach merania a pri kalibrácii urobenej v súlade s predpisom výrobcu.
- Merať je možné gama alebo beta žiarenie. Pri gama-spektrometrickom meraní musí výrobca špecifikovať rozlíšenie prístroja.

Zoznam vhodných rádionuklidov pre meradlá vzácnych plynov					
Plynný žiarič	Pevný žiarič	E _{beta} stred, MeV	E _{beta} max, MeV	E _{gama} , MeV	polčas
⁸⁵ Kr	¹⁸⁵ W ²⁰⁴ TI	0,251 0,127 0,244	0,67 0,427 0,766	-	10,72 y 75,1d 3,779 y
¹³³ Xe	²⁴¹ Am ¹⁸⁵ W	0,101 - 0,127	0,346 - 0,427	0,081 0,060 -	5,245 d 432,2 y 75,1 d
¹³⁵ Xe	¹⁴³ Pr ²⁰⁴ Tl ²⁰³ Hg	0,307 0,314 0,244 0,058	0,92 0,933 0,766 0,214	0,25 - - 0,279	9,09 h 13,56 d 3,779 y 46,6 d
⁴¹ Ar	⁸⁹ Sr ⁶⁰ Co ¹³⁷ Cs/ ¹³⁷ Ba ⁹⁰ Sr/ ⁹⁰ Y	0,459 0,583 0,096 0,173/0,425 0,196/0,935	0,198 0,463 0,314 0,514/1,176 0,546/2,27	1,29 - 1,17/1,33 0,662 -	1,827 h 50,5 d 5,271 y 30,0 y 29,12 y

Referenčná odozva pri meraní iódu

- Referenčná odozva sa nesmie líšiť o viac ako 20%
 od hodnoty deklarovanej výrobcom.
- Chemická forma iódu musí zodpovedať tej, na ktorú bolo meradlo vyrobené. Môže sa použiť iód ¹³¹I vo forme molekulového iódu alebo v organickej forme ako ICH₃ (metyliodid) alebo HIO₃ (kyselina iodičná).
- Zámeny nuklidov sú možné kvôli malému polčasu referenčných zdrojov:
 - ¹³³Ba miesto ¹³¹I a ¹²⁹I miesto ¹²⁵I.

- Môžu sa použiť detektory beta žiarenia, pričom treba zobrať do úvahy efektívnu plochu detektora, hrúbku, geometriu merania a závislosť účinnosti na energii žiarenia.
- Pri meraní gama žiarenia treba určiť energetickú závislosť účinnosti detektora a pri použití gamaspektrometrickej analýzy energetickú závislosť rozlíšenia detektora.
- Na zníženie vplyvu pozadia treba použiť tienenie alebo kompenzačné meranie iným detektorom.

